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Abstract

Typical differential equations-based models of cardiac
action potentials (APs) may be inefficient for studying pro-
cesses that occur over long time scales, such as heart
rate variability and electrophysiological remodeling due
to atrial fibrillation or heart failure. A discrete-time model
of cardiac APs and intracellular calcium cycling may of-
fer advantages in such settings, but correlations between
continuous- and discrete-time models so far have not been
developed. We used particle swarm optimization to fit the
parameters of the Qu et al. discrete-time model to AP dura-
tion (APD) values over a wide range of periods for the ten
Tusscher et al. (2006), Beeler-Reuter, and Fox et al. mod-
els. We found that the discrete model is capable of repro-
ducing the APD dynamics of each model over a wide range
of pacing periods including the alternans regions. Unlike
the detailed ionic models, the discrete model requires only
a single update step for each APD value and retains infor-
mation about calcium dynamics, such as peak intracellu-
lar calcium and sarcoplasmic reticulum calcium load dur-
ing the AP. Using these fittings, the discrete model may
offer advantages for studying aspects of cardiac APs or
calcium dynamics normally investigated through detailed
ionic models at a fraction of the computational cost.

1. Introduction

Detailed models of cardiac action potentials are typ-
ically described using differential equations, with many
time steps required to accurately simulate a single action
potential and many equations required to be solved for
a single time step update. Due to this computational re-
quirement, simulations of cardiac cells using these models
can be slow, especially when many action potentials are
required to study long-term behaviors like cardiac tissue
remodeling or the effects of circadian rhythms over days,
weeks, or months. Although relatively simple differential
equations-based ionic models may partially alleviate this
computational requirement [1-3], they still require small
time steps for accurate solutions and often omit important
state components such as intracellular ion concentrations.
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A possible alternative to differential equations-based ac-
tion potential models is the use of a discrete model, such
as the model developed by Qu et al. [4], which uses state
variables such as action potential duration (APD) to repre-
sent the state of an entire action potential. A single iter-
ation of this model therefore computes the behavior of an
entire action potential using only the values from the pre-
vious action potential, including calcium concentrations,
as an input, allowing rapid simulation of many action po-
tentials. However, as this model differs from differential
equations models in many ways, its capability to repro-
duce the important characteristics of cardiac cells found
in other models must be established if the model is to be
used in a predictive manner. The model’s behavior can be
adjusted using its parameters, but manually tuning the pa-
rameter values is challenging, as the model equations are
highly nonlinear and the model contains many parameters.

To identify parameter regimes of the discrete model that
reproduce the characteristics of popular ionic models, we
used the particle swarm optimization (PSO) algorithm to
fit the discrete model parameters to data taken from sev-
eral such models. The resulting fits demonstrate that the
discrete model can capture the rate-dependent dynamics
of these models, including bifurcations to alternans.

2. Methods

Action potential duration (APD) data was recorded from
the ten Tusscher et al. (2006) model [5], the Beeler-Reuter
model [6], and the Fox et al. model [7]. Each model was
paced using a dynamic pacing protocol in which 150 beats
were simulated per cycle length, with the next cycle length
set to 10 ms less than the previous without resetting the
model state until a cycle length of 100 ms or block was
reached. For each cycle length, APDgq values from the
last 4 beats were recorded for fitting. All three models
produced alternans for certain cycle lengths.

The discrete model proposed by Qu et al. [4] uses three
state variables to represent the state of the model for each
action potential: APD, sarcoplasmic reticulum calcium
load, and total calcium in the cell. Other important val-
ues, such as the peak intracellular calcium concentration,
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can be derived from these quantities. The model includes
22 parameters, all of which were fit for the ten Tusscher et
al. and Fox et al. models. For the Beeler-Reuter model, the
secondary restitution function term of the discrete model
was not used by setting the parameters A; = 0, D; = 1,
and 7, = 1; the other 19 parameters were then fit.

To enable fast fittings of many data sets, we extended the
CardioFit program [8] to support fitting the Qu et al. model
to APD data. The PSO formulation remained unchanged
from CardioFit, with the sum of relative error between the
model APD output and each input APD used as the error
metric. Fits were generated for entire APD rate-adaptation
curves, so that a single parameterization of the discrete
model was generated to fit the entire rate-adaptation curve
for a given differential equations-based model.

3. Results

Fittings of the Qu et al. model were generated for three
detailed ionic models using CardioFit and are shown in
Figure 1, with the APD data from the ionic model in black
and the fitted discrete model APDs in orange. The discrete
model closely reproduces the trend of the APD data as a
function of cycle length in all cases, notably reproducing
the bifurcation points and APDs during alternans. Thus,
the discrete model can faithfully reproduce both quantita-
tive and qualitative aspects of the APD rate-dependence
data for these three models. This result also demonstrates
the utility of the PSO approach used by CardioFit for iden-
tifying such parameterizations using only the output of the
ionic model.

A key concern when fitting models to data is identifiabil-
ity, which is the ability for both the model and target data
to constrain the optimal parameter set. Many cardiac mod-
els have poor identifiability with commonly-used types of
data [9, 10]. To demonstrate how well the parameters of
the Qu et al. model were constrained by the model data,
Figure 2 shows the distribution of each parameter value
over 50 fits to each set of model data. The parameter val-
ues were normalized over their respective bounds to facil-
itate comparisons; the bounds along with the means and
standard deviations for all parameters are given in Table 1.
Many parameters have a wide distribution in the parame-
ter space, implying low identifiability for these parameters.
On the other hand, some parameters, such as 7y and Dy
(which govern the steepness of the restitution curve and the
location of the steep region, respectively), are constrained
to small ranges of values in each fitting. The values of
such parameters may be essential to reproducing the de-
sired behavior in each case, with the other parameters pos-
sibly having little effect or having interacting effects that
allow a change in one parameter value to compensate for
the effect of another.

To determine which parameters had statistically signifi-

(A) ten Tusscher et al. Model

300 -

APD (ms)

200 { &

3

200 400 600 800 1000
(B) Beeler-Reuter Model

)
T 2001 =
£ 100
<
O .‘ T T T
400 600 800
(C) Fox et al. Model
E /
o A
% :o e Data
100 - (//‘} Fit
200 400 600 800 1000
Period (ms)
Figure 1. Fits of the Qu et al. discrete action poten-

tial model (orange) to three differential-equations models
(black). 50 fits were generated using CardioFit, with the
lowest-error result shown. Each fitting used 65 536 parti-
cles and 128 iterations. The discrete model was paced for
100 beats, with the last four APDs plotted. The discrete
model closely reproduces the APD dynamics of the differ-
ential equations models including the alternans regions.

cant differences in their distributions between models, we
determined the p-values for each pair of parameter distri-
butions among the models using the independent ¢-test.
Values of p < 0.001 were considered significant. Only
the parameters Ay (which influences the maximum APD),
Dy, and 7y produced distinct distributions with a high de-
gree of confidence for every pair of models, indicating that
these parameters may be the most important to capture the
specific behavior of each model. Some parameters distin-
guished certain data sets and not others; for example, A
and D; (secondary restitution parameters) showed signif-
icant difference when comparing the ten Tusscher et al.
and Fox et al. model data, while v (Ca-to-APD coupling),
 (strength of Ca period dependence) and 7 (APD-to-Ca
coupling) only distinguished the Beeler-Reuter model data
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Figure 2. Distributions of parameter values from CardioFit-generated parameter sets. The value of each parameter is
normalized over its range within the bounds of the parameter search space. 50 fits were generated for each differential-
equations model using 65 536 particles. The normalized parameter values of the best fit parameter set are marked with a
black “x”. For the Beeler-Reuter model A1, D1, 71 were not fit and a lower bound of 0 was used for 7.

Table 1. Parameter bounds and mean values + standard deviations (s.d.) obtained for the three datasets. For the Beeler-
Reuter (BR) fits A;, D1, and 7, were set to constants and a lower bound of 0 was used for 7g.

Parameter Bounds (A) ten Tusscher et al. Model (B) Beeler-Reuter Model (C) Fox et al. Model
Ay 100, 400 261.851 4 37.478 143.880 4 11.290 175.035 4 23.294
Dy 0, 80 1.751 £+ 1.638 49.448 4 8.172 16.855 + 3.893
To 30 (BR: 0), 150 74.849 + 3.878 46.978 £ 3.811 52.387 +2.295
Ay 0, 10 4.678 £ 1.224 0.000 6.055 £ 1.714
D, 10, 100 59.361 £ 7.023 1.000 74.687 £ 8.595
51 300, 800 529.238 4 95.640 1.000 499.129 + 81.123
~ 0,0.01 0.005 + 0.002 0.004 + 0.002 0.006 + 0.002
o 0.4,0.6 0.480 £ 0.036 0.488 4 0.027 0.489 4 0.033
Ty 60, 100 77.156 £ 7.038 79.936 £ 5.558 78.326 £ 5.648
o 0.018, 0.054 0.032 4 0.006 0.035 &+ 0.004 0.034 4 0.006
8 25,75 4.700 £ 0.785 5.234 £ 0.832 4.722 + 0.865
l. 70.125, 150 102.851 4 14.828 106.960 4 12.227 111.112 4 13.645
p 0,0.75 0.312 +0.126 0.347 & 0.125 0.383 +0.139
Tu 150, 250 193.269 & 15.374 189.577 & 14.475 194.579 4+ 16.381
v 0.3,0.5 0.380 £ 0.032 0.399 4+ 0.030 0.386 4 0.036
Con 37.5,62.5 46.924 £+ 3.740 48.392 £+ 3.508 48.665 £ 4.409
0 0,25 12.166 £ 4.416 12.121 £ 3.978 11.894 £ 3.793
n -0.075, 0.125 -0.024 £ 0.025 -0.014 £ 0.013 -0.034 £ 0.021
K -0.075, 0.125 0.017 £ 0.028 -0.011 £ 0.009 0.010 £ 0.020
Te 225, 375 292.962 + 25.511 291.197 4+ 23.876 301.157 4 28.873
€ 15,25 1.936 + 0.187 1.945 4+ 0.141 1.984 +0.171
Coe -21, 35 1.073 £ 11.713 4.471 £ 7.425 -2.526 £+ 13.673
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from the Fox et al. data. Additionally, 1 showed signifi-
cant difference between the ten Tusscher et al. and Beeler-
Reuter model data.

Table 2 gives information about the sum of relative APD
errors found for each model. Note that these values cannot
be directly compared across models, as each used a differ-
ent number of data points.

Table 2. Statistics on the sum of relative APD error in ms
for the 50 fits generated for each model.

Model Min Max Mean =+ s.d.

ten Tusscheretal. 0.891 2.031 1.138 &=0.156

Beeler-Reuter 6.236 12.982 7.723 +1.342

Fox et al. 1.733 5.772 3.539 £0.663
4. Discussion

This work demonstrates the capability of a discrete
model to quantitatively reproduce APD rate-dependence
data of detailed differential equations-based cardiac mod-
els including alternans dynamics, as shown in Figure 1, us-
ing parameter-fitting approaches such as PSO. The discrete
model thus has the potential to drastically speed up car-
diac simulation when estimation of physiological values
such as APD or peak intracellular calcium concentration
are needed, but the fine-grained time resolution of contin-
uous models is not required.

Although the Qu et al. model used in this study is ca-
pable of accurately reproducing many features of the APD
rate-dependent behavior from differential equations-based
models, this model has several limitations to consider. The
discrete model uses 22 parameters, with many parameter
changes leading to qualitative changes not thoroughly dis-
cussed in its original formulation [4]. While such param-
eter regimes may lead to useful model behavior, it is also
possible that certain parameterizations may encounter non-
physical behavior or numerical instability in certain state
components. As seen in Figure 2, many parameters are not
well-constrained by the current data, and may be impos-
sible to constrain in the current formulation due to struc-
tural limitations of the model, although this limitation does
not prevent CardioFit from finding parameterizations that
closely reproduce the input data. Additionally, the discrete
model does not include a mechanism to account for con-
duction block, although the model could be augmented to
handle this case.

A potential future improvement to the current fitting
scheme would be to include data such as peak intracel-
lular calcium concentration, which may further constrain
certain parameters. The PSO algorithm allows arbitrary
error metrics, making additional types of data simple to in-
corporate. A challenge of this approach, particularly when

fitting to model data, arises from the fact that many models
produce very different calcium dynamics, which the Qu et
al. model may have difficulty reproducing.
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